欧美精品在线第一页,久久av影院,午夜视频在线播放一三,久久91精品久久久久久秒播,成人一区三区,久久综合狠狠综合久久狠狠色综合,成人av一区二区亚洲精,欧美a级在线观看

        Stanford researchers use machine learning to improve efficiency in environmental protection

        Source: Xinhua| 2019-04-09 14:45:06|Editor: mingmei
        Video PlayerClose

        SAN FRANCISCO, April 8 (Xinhua) -- Researchers with Stanford University are employing new artificial intelligence (AI) technology to improve the efficiency of environmental protection by accurately detecting and identifying sources of possible pollution from animal farms, a Stanford newsletter said Monday.

        Stanford law professor Daniel Ho and his PhD student Cassandra Handan-Nader have found a way for machine learning to efficiently locate industrial animal operations on farms in the United States and help regulators assess environmental risks on each facility, said the Stanford Report, a newsletter delivering news about the university community via email.

        The newsletter said the U.S. Environmental Protection Agency has regarded agriculture as the leading source of pollutants into the country's water supply system.

        A huge proportion of the pollution was believed to come from large-scale, concentrated animal feeding operations, known as CAFOs, said the Stanford Report.

        The scarcity of CAFOs information has in some cases made it virtually impossible for regulators to monitor potential facilities that discharge pollutants into U.S. waterways, according to the newsletter.

        "This information deficit stifles enforcement of the environmental laws of the United States," Ho said.

        In order to improve environmental protection, Ho and Handan-Nader, who were helped by a group of students in economics and computer science with data analysis, resorted to several open source tools to retrain an existing image-recognition model to look for large-scale animal facilities.

        The Stanford researchers used the data collected by two nonprofit groups and the enormous database of satellite images by the U.S. Department of Agriculture in an effort to detect poultry facilities in North Carolina.

        They found their algorithm could find 15 percent more poultry farms than through manual enumeration, said the newsletter.

        "The model detected 93 percent of all poultry CAFOs in the area and was 97 percent accurate in determining which ones appeared after the feed mill opened," the two Stanford researchers wrote in their paper published in the online journal Nature Sustainability on Monday.

        They believed their algorithm could map 95 percent of the existing large-scale animal farms with fewer than 10 percent of the resources spent on manual counting of those locations.

        TOP STORIES
        EDITOR’S CHOICE
        MOST VIEWED
        EXPLORE XINHUANET
        010020070750000000000000011100001379625001
        主站蜘蛛池模板: 中文字幕区一区二| 男女视频一区二区三区| 97视频久久久| 国产精品欧美日韩在线| 97人人澡人人爽91综合色| 久久久精品视频在线| 处破大全欧美破苞二十三| 日本黄页在线观看| 日韩欧美国产高清91| 欧美日韩三区二区| www色视频岛国| 黑人巨大精品欧美黑寡妇| 丝袜美腿诱惑一区二区| 亚洲国产精品女主播| 少妇高清精品毛片在线视频| 日韩精品久久久久久久电影99爱| 国产一区二区三区色噜噜小说| 国产精品天堂网| 午夜一二区| 国产日韩欧美视频| 国产精品麻豆99久久久久久| 91丝袜诱惑| 国产精品久久久综合久尹人久久9| 国产一区二区三区的电影| 国产精品日本一区二区不卡视频| 亚洲欧美一二三| 国产一级一区二区三区| 综合国产一区| 久久一二区| 久久精品一| 欧美日韩一级二级三级| 乱淫免费视频| 欧洲国产一区| av午夜在线| 精品少妇一区二区三区免费观看焕| 国产日韩欧美三级| 狠狠色很很在鲁视频| 国产69精品久久久| 国产一区在线精品| 日韩精品在线一区二区三区| 国产目拍亚洲精品区一区| 91av中文字幕| 久久国产激情视频| 午夜国产一区二区三区四区| 综合久久色| 麻豆精品国产入口| 91午夜在线| 亚洲一级中文字幕| 国产日韩欧美在线一区| 国产精品久久久久四虎| 日韩欧美激情| 国产中文字幕一区二区三区 | 亚洲精品日韩精品| 久久久久国产亚洲| 在线精品视频一区| 免费观看xxxx9999片| 91视频国产一区| 精品国产一区二区三区久久久久久| 日韩一区免费在线观看| 久久免费视频一区二区| 午夜国产一区二区三区四区| 国产一区三区四区| 99re热精品视频国产免费| 午夜伦情电午夜伦情电影 | 亚洲国产欧美一区二区丝袜黑人| 国模一区二区三区白浆| 国产精品久久免费视频| 亚洲国产精品一区二区久久hs| 福利视频亚洲一区| 久久综合国产精品| 精品国精品国产自在久不卡| 日韩av在线一区| 国产九九影院| 在线国产精品一区二区| 精品国产91久久久| 久久精品国产一区二区三区不卡| 日本午夜一区二区| 日韩欧美高清一区| 一级女性全黄久久生活片免费 | 亚洲日韩aⅴ在线视频| 99爱精品视频| 国产精品久久久久久久综合| 日本精品一区二区三区视频| www.久久精品视频| 欧美乱大交xxxxx胶衣| 国产伦高清一区二区三区| 国产视频一区二区视频| 狠狠色噜狠狠狠狠| 中文字幕日本精品一区二区三区| 亚洲欧美中日精品高清一区二区| 精品久久久久久中文字幕大豆网| 国产精品第157页| 在线中文字幕一区| 日韩亚洲精品在线观看| 国产二区视频在线播放| 好吊色欧美一区二区三区视频| 欧美日韩一卡二卡| 一区二区国产盗摄色噜噜| 欧美一级久久久| 波多野结衣女教师电影| 色狠狠色狠狠综合| 国产馆一区二区| 九一国产精品| 亚洲乱亚洲乱妇28p| 夜夜躁狠狠躁日日躁2024| 日本精品一区视频| 国产精品奇米一区二区三区小说| 天天射欧美| 狠狠色狠狠色88综合日日91| **毛片在线| 少妇在线看www| 国产精品久久久久精| 国产精品你懂的在线| 午夜色大片| 欧美在线视频一二三区| 国产欧美一区二区精品久久久| 国产videosfree性另类| 中文字幕一区三区| 久久99国产视频| 久99精品| 午夜生活理论片| 蜜臀久久99精品久久久| 国产不卡一区在线| 国产一区免费播放| 蜜臀久久99精品久久久久久网站| 在线精品国产一区二区三区| 国产麻豆精品久久| 午夜诱惑影院| 欧美日韩中文字幕三区| 狠狠躁天天躁又黄又爽| 视频国产一区二区| 国产日产精品一区二区| 午夜亚洲影院| 精品a在线| 激情久久久久久| 国产清纯白嫩初高生在线观看性色| 狠狠色噜噜狠狠狠狠米奇7777| 福利视频亚洲一区| 久久影院一区二区| 4399午夜理伦免费播放大全| 8x8x国产一区二区三区精品推荐| 欧美日韩三区| 久久国产麻豆| 亚洲少妇一区二区| 一区二区三区国产精品视频| 欧美视屏一区二区| **毛片在线| 国产精品麻豆一区二区| 天啦噜国产精品亚洲精品| 99国产伦精品一区二区三区| 亚洲国产一区二区精品| 亚洲国产99| 国产亚洲久久| 韩漫无遮韩漫免费网址肉| 91精品一区| 久久久久亚洲精品| 午夜黄色一级电影| 99久久免费精品视频| 亚洲日韩欧美综合| 国产精品偷伦一区二区| 亚洲精品性| 少妇av一区二区三区| 欧美一区二区精品久久| 毛片大全免费看| 91精品综合在线观看| 欧美日韩中文国产一区发布| 一本一道久久a久久精品综合蜜臀| 国产一区二区三区在线电影| 亚洲欧美日韩精品在线观看| 自拍偷在线精品自拍偷写真图片| 日本免费电影一区二区| 狠狠色噜噜狠狠狠四色米奇| 欧美日韩一区二区三区四区五区六区| 精品久久综合1区2区3区激情 | 夜夜躁日日躁狠狠久久av| 乱子伦农村| 国内久久精品视频| 少妇厨房与子伦免费观看| 国产目拍亚洲精品区一区| 午夜精品一区二区三区三上悠亚 | 久久人人爽爽| 日日夜夜亚洲精品| 午夜看片网址| 思思久久96热在精品国产| 亚洲精品www久久久| 国产精品国产三级国产专播精品人| 欧美片一区二区| 国产白丝一区二区三区| 香蕉av一区| 国产在线不卡一| 亚洲视频精品一区| 国产第一区二区| 91香蕉一区二区三区在线观看| 欧美日韩精品在线播放| 色噜噜狠狠狠狠色综合久| 久久婷婷国产麻豆91天堂徐州| 色一情一交一乱一区二区三区| 日本一区二区电影在线观看| 国产男女乱淫真高清视频免费| 国产精品999久久久| 99久久国产综合| 搡少妇在线视频中文字幕| 久久免费视频99| 色婷婷精品久久二区二区蜜臂av| 国产一区二区精华| 国语对白一区二区| 国产精品午夜一区二区三区视频| 99国产精品| 欧美日韩一区免费| 97国产精品久久| 国产日韩欧美亚洲| 一级午夜影院| 亚洲国产精品综合| 国产精品视频tv| 欧美髙清性xxxxhdvid| 97久久国产精品| 国产91久| 久久精品中文字幕一区| 亚洲免费永久精品国产| 久久精品入口九色| 91亚洲精品国偷拍自产| 日韩免费一级视频| 久久久久久综合网| 国产一区二区二| 国产精品日韩电影| 国产精品v欧美精品v日韩| 亚洲麻豆一区| 在线精品国产一区二区三区88 | 久久国产视屏| 国产精品亚发布| 欧美一区二区三区日本| 色偷偷一区二区三区| 国产在线拍偷自揄拍视频| 91精品国产麻豆国产自产在线| 97人人模人人爽视频一区二区 | 久久天堂国产香蕉三区| 日本一码二码三码视频| 久久一区二| 国产69精品久久久久777| 亚洲va国产2019| 亚洲s码欧洲m码在线观看| 国产乱人伦精品一区二区三区| 一区二区三区中文字幕| 午夜毛片影院| 强制中出し~大桥未久4| 久久精品国产一区二区三区不卡|