欧美精品在线第一页,久久av影院,午夜视频在线播放一三,久久91精品久久久久久秒播,成人一区三区,久久综合狠狠综合久久狠狠色综合,成人av一区二区亚洲精,欧美a级在线观看

        Smarter AI algorithm effective in screening eye diseases

        Source: Xinhua| 2018-02-23 01:42:15|Editor: Mu Xuequan
        Video PlayerClose

        WASHINGTON, Feb. 22 (Xinhua) -- An international team has developed an artificial intelligence (AI) tool to screen patients with blinding eye diseases which are treatable if detected at early stages.

        The paper, published on Thursday in the journal Cell, showed that researchers used the AI-based convolutional neural network to review more than 200,000 eye scans conducted with optical coherence tomography, a noninvasive technology that bounces light off the retina to create two- and three-dimensional representations of tissue.

        Researchers then employed a technique called transfer learning in which knowledge gained in solving one problem is stored by a computer and applied to different but related problems.

        For example, an AI neural network optimized to recognize the discrete anatomical structures of the eye, such as the retina, cornea or optic nerve, can identify and evaluate them when examining images of a whole eye.

        It is more quickly and efficiently than previous tools which require using millions of images to train an AI system, researcher said.

        This allows the AI system to learn effectively with a much smaller dataset than traditional methods.

        The researchers also added the "occlusion testing" in which the computer identifies the areas in each image that are of greatest interest and the basis for its conclusions, the paper's senior author Zhang Kang told Xinhua.

        "Machine learning is often like a black box where we don't know exactly what is happening," said Zhang, professor of ophthalmology at Shiley Eye Institute and University of California San Diego School of Medicine and Guangzhou Women and Children's Medical Center.

        "With occlusion testing, the computer can tell us where it is looking in an image to arrive at a diagnosis, so we can figure out why the system got the result it did. This makes the system more transparent and increases our trust in the diagnosis."

        The study focused on two common causes of irreversible blindness: macular degeneration and diabetic macular edema. Both conditions, however, are treatable if detected early.

        Also, the AI platform is able to generates a treatment recommendation which is not done in previous studies.

        According to Zhang, with simple training, the machine performed almost similar to a well-trained ophthalmologist, and could generate a decision on whether or not the patient should be referred for treatment within 30 seconds, with more than 95 percent accuracy.

        The researchers also tested their tool in diagnosing childhood pneumonia, based on machine analyses of chest X-rays.

        They found that the computer was able to differentiate between viral and bacterial pneumonia with greater than 90 percent accuracy.

        "The future is more data, more computational power and more experience of the people using this system so that we can provide the best patient care possible, while still being cost-effective," Zhang said.

        TOP STORIES
        EDITOR’S CHOICE
        MOST VIEWED
        EXPLORE XINHUANET
        010020070750000000000000011105091369922981
        主站蜘蛛池模板: 国产在线一卡| 欧美一区二区三区激情| 国产欧美一区二区精品久久| 欧美精品中文字幕在线观看| 国产一区二区三级| 日韩一区免费| 久久精品国产亚洲7777| 国产欧美日韩在线观看| 日韩av中文字幕第一页| 国产在线不卡一区| 亚洲精品久久久久中文字幕欢迎你 | 国产欧美日韩一区二区三区四区| 在线观看欧美一区二区三区| 99精品欧美一区二区三区美图| 久久99精| 精品国产一区二区三区麻豆免费观看完整版| 蜜臀久久99静品久久久久久| 国产二区精品视频| 国内久久久| 91麻豆精品国产综合久久久久久| 婷婷嫩草国产精品一区二区三区| 日韩精品中文字幕在线| 高清国产一区二区三区| 亚洲精品国产精品国自| 538国产精品一区二区| 一区二区三区四区视频在线| 日韩一级在线视频| 国产精品一区二区在线观看免费| 91麻豆精品国产91久久久更新时间| 激情久久综合| 国产88av| 欧美高清一二三区| 国产精品日韩一区二区| 99久久精品免费看国产免费粉嫩| 好吊妞国产欧美日韩软件大全| 丰满岳妇伦4在线观看| 97久久精品人人做人人爽| 国产精品欧美一区二区视频| 日韩美一区二区三区| 日本护士hd高潮护士| 夜夜躁日日躁狠狠躁| 国产精品九九九九九九九| 激情久久久| 麻豆精品一区二区三区在线观看| 夜夜嗨av色一区二区不卡| 日韩夜精品精品免费观看| 高清欧美精品xxxxx在线看| 97久久国产亚洲精品超碰热| 日韩av中文字幕在线免费观看 | 精品亚洲午夜久久久久91| 国产综合亚洲精品| 女女百合互慰av| 免费的午夜毛片| 国产欧美亚洲精品| 日本高清一二区| 国产品久久久久久噜噜噜狼狼| 国产精品久久99| 欧美高清视频一区二区三区| 日韩一区二区中文字幕| 国产97久久| 亚洲精品卡一卡二| **毛片免费| 国产亚洲精品久久久久动| 黄毛片免费| 精品久久久久久亚洲综合网| 日本aⅴ精品一区二区三区日| 国产精品高潮呻吟久| freexxxxxxx| 亚洲乱强伦| 毛片免费看看| 国产精品二区在线| 欧美日韩一区二区三区69堂| 日韩精品一区三区| 欧美一区二区三区免费在线观看| 夜色av网| 久久精品欧美一区二区| 99国产精品久久久久| 国产精品99一区二区三区| 人人要人人澡人人爽人人dvd| 欧美黄色片一区二区| 国产伦精品一区二区三区无广告| 国产伦精品一区二| 国产性猛交xx乱视频| 国产69精品久久| 国产日韩精品一区二区| 国产欧美精品一区二区三区-老狼 国产精品一二三区视频网站 | 国产精品久久91| 国产精一区二区三区| 国产精品色在线网站| 久久国产精品免费视频| 日韩av在线播| 波多野结衣巨乳女教师| 久久综合狠狠狠色97| 99riav3国产精品视频| 国产精品日韩一区二区三区| 68精品国产免费久久久久久婷婷 | 在线视频国产一区二区| 男女视频一区二区三区| 国产亚洲精品久久777777| 精品a在线| 日韩亚洲精品在线| 国产精品第157页| 国内精品99| 狠狠色噜噜综合社区| av不卡一区二区三区| 国产91久| 91麻豆精品国产91久久| 欧美乱大交xxxxx胶衣| 99爱国产精品| 国内少妇偷人精品视频免费| 国产一二区视频| 午夜免费av电影| 国产精品九九九九九九| 国产一区二区播放| 久久aⅴ国产欧美74aaa| 国产伦精品一区二区三区免费迷| 免费看农村bbwbbw高潮| 在线观看国产91| 99久久精品一区字幕狠狠婷婷 | 精品午夜电影| 国产精品一区二区久久乐夜夜嗨 | 国产第一区二区三区| 狠狠躁狠狠躁视频专区| 国产www亚洲а∨天堂| 亚洲欧洲精品一区二区三区不卡| 欧美精品国产一区二区| 亚洲精品主播| 午夜影院激情| 老女人伦理hd| 免费看大黄毛片全集免费| 草逼视频网站| 国产精品一区二区三区在线看| 99久久国产综合精品色伊| 猛男大粗猛爽h男人味| 日韩精品一区二区三区免费观看视频| 亚洲精品中文字幕乱码三区91| 亚洲欧美国产日韩综合| 国产视频二区| 99久久国产综合精品麻豆| 国产一区二区三区黄| 99精品黄色| 狠狠躁日日躁狂躁夜夜躁av| 99久久精品一区二区| 亚洲精品国产setv| 国产床戏无遮挡免费观看网站| 亚洲精品乱码久久久久久蜜糖图片 | 久久国产视屏| 国产精品视频久久| 日韩av在线免费电影| 国产区图片区一区二区三区| 日韩夜精品精品免费观看| 日韩欧美一区二区在线视频| 国产91色综合| 国产日韩麻豆| 亚洲欧洲日韩在线| 欧美人妖一区二区三区| 激情久久一区| 欧美一区二区三区视频在线观看| 国产日韩欧美色图| 国产一区日韩一区| 亚洲精品乱码久久久久久高潮| 香港日本韩国三级少妇在线观看| 亚洲少妇一区二区| 自拍偷在线精品自拍偷写真图片| 国产91高清| 91一区二区三区在线| 国产人成看黄久久久久久久久| 99精品国产一区二区三区麻豆| 性欧美一区二区三区| 狠狠躁狠狠躁视频专区| 午夜欧美影院| 日韩av片无码一区二区不卡电影| 国产理论片午午午伦夜理片2021 | 性视频一区二区三区| 99久久国产综合| 欧美一区二区三区免费观看视频| 视频国产一区二区| 亚洲一二三四区| 免费xxxx18美国| 久久国产激情视频| 中文丰满岳乱妇在线观看| 国产麻豆一区二区| 香蕉视频一区二区三区| 久久九九国产精品| 鲁丝一区二区三区免费| 亚洲欧洲一区二区| 亚洲精品一区中文字幕| 欧美日韩一区二区三区免费| 欧美一区二区三区免费视频| 国产精品久久久久99| 久久久精品免费看| 制服丝袜二区| 欧美在线播放一区| 日韩av免费电影| freexxxx性| 欧美午夜羞羞羞免费视频app | 在线精品视频一区| 中文乱幕日产无线码1区| 日本精品视频一区二区三区| 私人影院av| 亚洲精品国产suv| 久久99精品国产麻豆宅宅| 正在播放国产一区二区| 亚洲国产日韩综合久久精品 | 国产一区网址| 99国产精品一区二区| 亚洲女人av久久天堂| 男女午夜影院| 久久久久国产亚洲| 国产欧美日韩精品一区二区三区 | 天天干狠狠插| 国产精品一区亚洲二区日本三区| 国产精品久久久久久一区二区三区| 国产日韩一二三区| 日本精品一二三区| 亚洲高清毛片一区二区| 视频一区二区三区欧美| 激情久久一区二区| 国产一区二区在线观看免费| 精品午夜电影| 一区二区免费在线观看| 性欧美激情日韩精品七区| 久久精品手机视频| 午夜在线看片| 精品久久二区| 夜色av网站| 国产精品久久久久久久久久久久冷| 国产麻豆一区二区三区在线观看| 国产精品久久久久四虎| 99精品国产一区二区三区不卡| 国产91在线拍偷自揄拍| 国产一区激情| 偷拍精品一区二区三区| 国产精品免费自拍| 亚洲精品老司机| 欧美精品日韩精品| 欧美在线一级va免费观看| 欧美日韩久久一区| 亚洲国产精品91| 国产视频一区二区视频| 国内精品久久久久影院日本| 97久久国产亚洲精品超碰热| 欧美乱码精品一区二区 | 91亚洲精品国偷拍| 日韩精品一区在线视频| 欧美一区二区精品久久|