"/>
欧美精品在线第一页,久久av影院,午夜视频在线播放一三,久久91精品久久久久久秒播,成人一区三区,久久综合狠狠综合久久狠狠色综合,成人av一区二区亚洲精,欧美a级在线观看

Feature: To ensure safe, sufficient farm produce supply for world's growing population

Source: Xinhua    2018-07-02 07:08:28

by Xu Jing, Zhou Zhou, Miao Zhuang

CHICAGO, July 1 (Xinhua) -- Ian Jepson has worked for Syngenta for 29 years. As head of plant performance biology at Syngenta Research Triangle Park, North Carolina, he aims to develop crops that produce more yields in a sustainable way.

"The world's population increases 100,000 people every single day. We need to be able to feed those people in a sustainable way," he told Xinhua in an interview.

INCREASE CROP YIELD

Agricultural production in the world faces many challenges nowadays: insects, crop diseases and viruses. All these pose a big threat to the output of agricultural products.

"We have a number of projects using GMO (genetically modified organism) and non-GMO techniques to do that (increase crop yield)," Jepson said. By technology-rich aid technology, Jepson and his team are transferring insect resistance genes into the crops to stop the insects damaging the crop, then losing yield.

Jepson is also studying the impact of drought, heat and cold on crops.

Syngenta has an innovation center located in the Research Triangle Park in the U.S. state of North Carolina for Jepson and his team to do all these researches. The crop greenhouse facility here has many small chambers, with each chamber being controlled independently of the other in terms of temperature, humidity, and CO2, and underneath each room in the basement there are very advanced set of equipment for air conditioning, and humidity control, CO2 control.

"It's like an arms race. Biology will always adapt," Jepson said. When the first wave of technology was introduced, it protected the crops from certain insects and diseases. Then the insects and diseases evolve, and eat crops again after a number of years. Then new technology needs to be introduced.

"So we need to always bring in new technologies," Jepson stressed. "You need a combination of technologies, including new technologies like genome editing, biologicals," as a supplement to chemical control and traditional breeding.

"The evolution of modern farming technology and responsible, science-based environmental management is imperative if we are to sustainably produce affordable, safe and local food to feed more than 9 billion people by 2050 and take care of our planet," Jepson reiterated.

Before becoming product safety head of Syngenta, Hope Hart has been involved in insect control research in the company for 10 years. "We use (GM) technology to help farmers produce more food, increase their yield. We also help farmers decrease their inputs, like water input and chemical input. So it gives farmers economic advantages as well."

Statistics show that in early 1930s, 7,000 corn plants per acre were grown in the United States, yielding about 27 bushels per acre. Today, 35,000 plants and 150 bushels per acre are common, thanks to modern equipment and GM technologies.

ENVIRONMENT FRIDENDLY

About 70 percent of the world's water is used by agriculture, and there is only a small amount available for expansion.

Statistics provided by the United Nations Environment Programme (UNEP) show that in 1950, one hectare of farmland only need to feed two people. By 2030, the number of people one hectare of farmland need to feed will increase to five people. This requires a better use of existing farmland.

One way to better use existing farmland is to make crops more sustainable and environmentally friendly.

Jepson's team has worked on a big crop program for drought tolerance. They also have a GM program developing GM leads, and crops engineered with the GM leads they developed would use less water. Furthermore, they are using genome editing technology to produce corn varieties that use 15 percent less water.

In addition, Jepson is using advanced molecular marker, a non-GM technology, to develop corn that can grow under moderate drought stress conditions and produces 25 percent more yield.

Controlling use of chemicals, say herbicides, insecticides, for the benefit of environment is another advantage GM technology development gives.

Many old technologies on the market from several decades ago are characteristic of high use rate of chemicals and have potential environmental impacts. "Our ambition is to replace those with modern, safer chemistry," said Jepson.

Traditionally, one hectare of farmland may need two kilograms of chemicals. With new technologies, spoonful chemical application may be enough, Jepson said. "One application may control for the season."

Of her 22-year career in Syngenta, Hart has been in product safety research for 12 years. She holds that GM crops have two advantages: allowing farmers to spray less pesticide; and saving farmers from excessive tilling. "No tilling has huge benefits for the ground, from temperature control to erosion, soil erosion, water runoff from the soil."

Thanks to introduction of modern farming technologies, the yield of cotton, soybeans, corn and wheat worldwide has increased by 43 percent, 55 percent, 64 percent and 25 percent, respectively, from 1980 to 2011.

In the same period, soil loss caused by cotton, soybean, corn and wheat growing dropped by 68 percent, 66 percent, 67 percent and 47 percent, respectively; irrigation water use dropped by 75 percent, 42 percent, 53 percent and 12 percent; energy use dropped by 31 percent, 48 percent, 44 percent and 12 percent; and carbon emission dropped by 22 percent, 49 percent, 36 percent and two percent.

FOOD SECURITY

Entering the main gate of Syngenta Innovation Center located in the Research Triangle Park in the U.S. state of North Carolina one can see an oil painting portrait of Mary-Dell Chilton, the Mother of Genetic Engineering, right in front.

In 1977, Chilton documented how a bacterium transferred some of its DNA into a tobacco leaf, triggering the growth of a crown gall. By discovering the mechanism Chilton launched GM.

Since GM technology was first put on market in 1996, an estimated 186 million hectares of GM food crops have been grown worldwide; and over three trillion GM food meals have been served and eaten by humans.

Despite the fact that GM foods are widely consumed, the concern about GM foods has never disappeared.

Hart explained her work to Xinhua. GM crops usually take 10 to 13 years from idea to market. "About half of that time is product safety studies," Hart said. "We conduct anywhere from 80 to 100 studies on every one of our GM crops before they go out onto market."

"We also test the plant to make sure it still is nutritious as it was when it started out," Hart added.

Hart compares human's digestion of GM foods to a broken camera, saying if a camera is broken into pieces, one piece cannot be a functioning camera.

"The same thing is true for a gene," said Hart. "When we eat DNA, it gets broken down into individual pieces and then our body absorbs those individual pieces."

"I had cheese toast this morning. I ate a lot of wheat DNA with my bread and cow DNA with my cheese, and I am not turning into a wheat plant or cow right now. I am not making wheat proteins. There is nothing incorporated into my DNA that will actually pass onto the next generation," Hart said.

Nevertheless, Hart does not oppose other types of farming. "Sometimes farmers may need to be more conventional than GM, or they are in a situation where the genetics work better for them and they use a GM approach instead," Hart added. "I believe in pulling all these different technologies together."

CHINA TIES

In June 2017, ChemChina, a state-owned enterprise with full name as China National Chemical Corporation, purchased Syngenta, for 43 billion U.S. dollars, the largest transaction ever clinched by a Chinese company overseas.

Given China's huge population and reliance on agriculture, the marriage between ChemChina and Syngenta is good news for them both.

Before the tie was knotted, ChemChina and Syngenta have already forged a strong relationship for decades. They had worked closely on a potato project in Dingxi in China's northwestern Gansu Province, where they brought technology, products and advice to farmers there and increased the yields by more than 30 percent.

Before being purchased, Syngenta has already established multiple innovation and R&D centers in China, has five wholly-owned enterprises, several joint ventures and a number of representative offices, and has employed around 2,000 workers there.

China is very active as well as advanced in modern agricultural technology research, and has many gifted agricultural talents, said Shi Liang, head of Trait Technologies at Syngenta. Through its innovation centers in China, "Syngenta is supporting its global agricultural research to feed the global agricultural pipeline; to attract Chinese agricultural talents; and to support China's agriculture."

In the past 10 years, Syngenta has established collaboration with 26 institutes and universities in China, and supported more than 28 Chinese students with Syngenta Mary-Dell Chilton Graduate Scholarship.

"I think Syngenta can play a good role in supporting China's agriculture, from the research development to the production... and ChemChina's purchase of Syngenta has elevated it (the role)," Shi told Xinhua. "We can actually work together for some big China initiatives, which would not be possible in the past for a foreign company."

"Chinese agricultural companies and the academia always want to find a partner. They have done good front-end research. They just don't have a good way to move things to the pipeline and now it is a very good opportunity," Shi said.

Excited about the agricultural prospects the marriage may bring to China in the future, Shi said: "let's do something together and we can get something pass to the downstream."

Editor: ZX
Related News
Xinhuanet

Feature: To ensure safe, sufficient farm produce supply for world's growing population

Source: Xinhua 2018-07-02 07:08:28

by Xu Jing, Zhou Zhou, Miao Zhuang

CHICAGO, July 1 (Xinhua) -- Ian Jepson has worked for Syngenta for 29 years. As head of plant performance biology at Syngenta Research Triangle Park, North Carolina, he aims to develop crops that produce more yields in a sustainable way.

"The world's population increases 100,000 people every single day. We need to be able to feed those people in a sustainable way," he told Xinhua in an interview.

INCREASE CROP YIELD

Agricultural production in the world faces many challenges nowadays: insects, crop diseases and viruses. All these pose a big threat to the output of agricultural products.

"We have a number of projects using GMO (genetically modified organism) and non-GMO techniques to do that (increase crop yield)," Jepson said. By technology-rich aid technology, Jepson and his team are transferring insect resistance genes into the crops to stop the insects damaging the crop, then losing yield.

Jepson is also studying the impact of drought, heat and cold on crops.

Syngenta has an innovation center located in the Research Triangle Park in the U.S. state of North Carolina for Jepson and his team to do all these researches. The crop greenhouse facility here has many small chambers, with each chamber being controlled independently of the other in terms of temperature, humidity, and CO2, and underneath each room in the basement there are very advanced set of equipment for air conditioning, and humidity control, CO2 control.

"It's like an arms race. Biology will always adapt," Jepson said. When the first wave of technology was introduced, it protected the crops from certain insects and diseases. Then the insects and diseases evolve, and eat crops again after a number of years. Then new technology needs to be introduced.

"So we need to always bring in new technologies," Jepson stressed. "You need a combination of technologies, including new technologies like genome editing, biologicals," as a supplement to chemical control and traditional breeding.

"The evolution of modern farming technology and responsible, science-based environmental management is imperative if we are to sustainably produce affordable, safe and local food to feed more than 9 billion people by 2050 and take care of our planet," Jepson reiterated.

Before becoming product safety head of Syngenta, Hope Hart has been involved in insect control research in the company for 10 years. "We use (GM) technology to help farmers produce more food, increase their yield. We also help farmers decrease their inputs, like water input and chemical input. So it gives farmers economic advantages as well."

Statistics show that in early 1930s, 7,000 corn plants per acre were grown in the United States, yielding about 27 bushels per acre. Today, 35,000 plants and 150 bushels per acre are common, thanks to modern equipment and GM technologies.

ENVIRONMENT FRIDENDLY

About 70 percent of the world's water is used by agriculture, and there is only a small amount available for expansion.

Statistics provided by the United Nations Environment Programme (UNEP) show that in 1950, one hectare of farmland only need to feed two people. By 2030, the number of people one hectare of farmland need to feed will increase to five people. This requires a better use of existing farmland.

One way to better use existing farmland is to make crops more sustainable and environmentally friendly.

Jepson's team has worked on a big crop program for drought tolerance. They also have a GM program developing GM leads, and crops engineered with the GM leads they developed would use less water. Furthermore, they are using genome editing technology to produce corn varieties that use 15 percent less water.

In addition, Jepson is using advanced molecular marker, a non-GM technology, to develop corn that can grow under moderate drought stress conditions and produces 25 percent more yield.

Controlling use of chemicals, say herbicides, insecticides, for the benefit of environment is another advantage GM technology development gives.

Many old technologies on the market from several decades ago are characteristic of high use rate of chemicals and have potential environmental impacts. "Our ambition is to replace those with modern, safer chemistry," said Jepson.

Traditionally, one hectare of farmland may need two kilograms of chemicals. With new technologies, spoonful chemical application may be enough, Jepson said. "One application may control for the season."

Of her 22-year career in Syngenta, Hart has been in product safety research for 12 years. She holds that GM crops have two advantages: allowing farmers to spray less pesticide; and saving farmers from excessive tilling. "No tilling has huge benefits for the ground, from temperature control to erosion, soil erosion, water runoff from the soil."

Thanks to introduction of modern farming technologies, the yield of cotton, soybeans, corn and wheat worldwide has increased by 43 percent, 55 percent, 64 percent and 25 percent, respectively, from 1980 to 2011.

In the same period, soil loss caused by cotton, soybean, corn and wheat growing dropped by 68 percent, 66 percent, 67 percent and 47 percent, respectively; irrigation water use dropped by 75 percent, 42 percent, 53 percent and 12 percent; energy use dropped by 31 percent, 48 percent, 44 percent and 12 percent; and carbon emission dropped by 22 percent, 49 percent, 36 percent and two percent.

FOOD SECURITY

Entering the main gate of Syngenta Innovation Center located in the Research Triangle Park in the U.S. state of North Carolina one can see an oil painting portrait of Mary-Dell Chilton, the Mother of Genetic Engineering, right in front.

In 1977, Chilton documented how a bacterium transferred some of its DNA into a tobacco leaf, triggering the growth of a crown gall. By discovering the mechanism Chilton launched GM.

Since GM technology was first put on market in 1996, an estimated 186 million hectares of GM food crops have been grown worldwide; and over three trillion GM food meals have been served and eaten by humans.

Despite the fact that GM foods are widely consumed, the concern about GM foods has never disappeared.

Hart explained her work to Xinhua. GM crops usually take 10 to 13 years from idea to market. "About half of that time is product safety studies," Hart said. "We conduct anywhere from 80 to 100 studies on every one of our GM crops before they go out onto market."

"We also test the plant to make sure it still is nutritious as it was when it started out," Hart added.

Hart compares human's digestion of GM foods to a broken camera, saying if a camera is broken into pieces, one piece cannot be a functioning camera.

"The same thing is true for a gene," said Hart. "When we eat DNA, it gets broken down into individual pieces and then our body absorbs those individual pieces."

"I had cheese toast this morning. I ate a lot of wheat DNA with my bread and cow DNA with my cheese, and I am not turning into a wheat plant or cow right now. I am not making wheat proteins. There is nothing incorporated into my DNA that will actually pass onto the next generation," Hart said.

Nevertheless, Hart does not oppose other types of farming. "Sometimes farmers may need to be more conventional than GM, or they are in a situation where the genetics work better for them and they use a GM approach instead," Hart added. "I believe in pulling all these different technologies together."

CHINA TIES

In June 2017, ChemChina, a state-owned enterprise with full name as China National Chemical Corporation, purchased Syngenta, for 43 billion U.S. dollars, the largest transaction ever clinched by a Chinese company overseas.

Given China's huge population and reliance on agriculture, the marriage between ChemChina and Syngenta is good news for them both.

Before the tie was knotted, ChemChina and Syngenta have already forged a strong relationship for decades. They had worked closely on a potato project in Dingxi in China's northwestern Gansu Province, where they brought technology, products and advice to farmers there and increased the yields by more than 30 percent.

Before being purchased, Syngenta has already established multiple innovation and R&D centers in China, has five wholly-owned enterprises, several joint ventures and a number of representative offices, and has employed around 2,000 workers there.

China is very active as well as advanced in modern agricultural technology research, and has many gifted agricultural talents, said Shi Liang, head of Trait Technologies at Syngenta. Through its innovation centers in China, "Syngenta is supporting its global agricultural research to feed the global agricultural pipeline; to attract Chinese agricultural talents; and to support China's agriculture."

In the past 10 years, Syngenta has established collaboration with 26 institutes and universities in China, and supported more than 28 Chinese students with Syngenta Mary-Dell Chilton Graduate Scholarship.

"I think Syngenta can play a good role in supporting China's agriculture, from the research development to the production... and ChemChina's purchase of Syngenta has elevated it (the role)," Shi told Xinhua. "We can actually work together for some big China initiatives, which would not be possible in the past for a foreign company."

"Chinese agricultural companies and the academia always want to find a partner. They have done good front-end research. They just don't have a good way to move things to the pipeline and now it is a very good opportunity," Shi said.

Excited about the agricultural prospects the marriage may bring to China in the future, Shi said: "let's do something together and we can get something pass to the downstream."

[Editor: huaxia]
010020070750000000000000011100001372942761
主站蜘蛛池模板: 最新国产一区二区| 亚洲精品一区在线| 欧美精品中文字幕在线观看| 亚洲精品一区二区三区香蕉| 国产乱一乱二乱三| 精品国产乱码久久久久久软件影片| 国产精彩视频一区二区| 午夜影院5分钟| 国产一区二区播放| 欧美激情视频一区二区三区免费| 狠狠色丁香久久婷婷综| 狠狠色噜噜综合社区| 欧美日韩一区二区三区免费| www.成| 国产二区视频在线播放| xx性欧美hd| 狠狠色狠狠色综合日日五| 欧美日韩一区二区三区精品| 国产午夜精品一区二区三区四区| av素人在线| 中文字幕二区在线观看| 狠狠色丁香久久综合频道| 天摸夜夜添久久精品亚洲人成| 一二三区欧美| 国产一区二区三区四区五区七| 午夜欧美影院| _97夜夜澡人人爽人人| 国产一区二区电影在线观看| 国产精品欧美久久| 国产一区二区精华| 91精品久久久久久久久久| 国产精品亚发布| 亚洲1区在线观看| 四虎国产精品永久在线| 国产91精品一区二区麻豆亚洲| 夜色av网| 国内精品99| 欧美hdfree性xxxx| 国产又色又爽无遮挡免费动态图| 午夜少妇性影院免费观看| 国产乱人激情h在线观看| 亚洲区日韩| 狠狠躁夜夜躁xxxxaaaa| 国产一区二区中文字幕| 免费看片一区二区三区| 国产一级自拍| 国产日韩欧美第一页| 国产精品久久久久久久久久久久久久久久久久 | 欧美精品一区二区久久| 精品久久久综合| 99精品视频一区| 少妇精品久久久久www蜜月| 亚洲国产99| 欧美精选一区二区三区| 久久国产精品波多野结衣| 国产日韩欧美一区二区在线播放| 国产97在线看| 性生交大片免费看潘金莲| 久久国产麻豆| 国产精品理人伦一区二区三区| 午夜影院你懂的| 国产香蕉97碰碰久久人人| 91精品久久久久久综合五月天| 热re99久久精品国99热蜜月| 少妇自拍一区| 欧美一区免费| 国产一区二区播放| 国产99网站| 中文字幕久久精品一区| 精品久久久久一区二区| 91看片片| 久久久久久久亚洲视频| 国产乱子伦农村xxxx| 日韩精品中文字幕在线| 一区二区欧美精品| 亚洲女人av久久天堂| 久久99精品国产麻豆婷婷| 日本边做饭边被躁bd在线看| 欧美69精品久久久久久不卡| 国产精品视频1区2区3区| 亚洲欧美日韩综合在线| 国产伦精品一区二区三区无广告|